
(X)debug Silverstripe
recycled talk form 2016

Same place, same guys, same talk like 2016

Werner M. Krauß
wmk

Bad Ischl, Austria
netwerkstatt.at
2 kids, at least 5 guitars, pilgrim

Lukas Erni
lerni

Ruswil, Switzerland
kraftausdruck.ch
2 kids, Beekeeping

What has changed since 2016?

Things getting slower with containered development environment but gaining
speed with Xdebug 3.x, PHP 7.x & 8.x and much more predictable & streamlined
development environment. With DDEV/containers, setting-up Xdebug has become
a breeze.

A bit of history repeating

It’s not a bug, it’s a feature!

Most of the time… not

History of bugs

History of bugs

● the class of insects originated on Earth about 480 million years ago
● so…
● bugs have been there all the time before computers
● and annoyed engineers
● fun fact: bed bugs are the horror of all pilgrims

19th Century Hardware Engineering

„The first step [in all of my inventions] is an intuition, and comes with a burst, then
difficulties arise – this thing gives out and [it is] then that ‘Bugs’ – as such little
faults and difficulties are called – show themselves […].“

Thomas Edison, 1878

The first Bug

● 09.09.1947, Harvard Faculty at the
Computation Laboratory

● Operators traced an error in the Mark II
to a moth trapped in a relay, coining the
term bug.

● This bug was carefully removed and
taped to the log book.

● source: Wikipedia

https://en.wikipedia.org/wiki/Software_bug

History Of Debugging PHP

Debug History in PHP / Silverstripe CMS

● echo($var);

● print_r($array);

● die("I'm here");

Not in Live mode

● debug::show(...);

● debug::message(...);

Also in Live mode

● debug::dump(...);

In Templates

● $Foo.Debug()

Debugging in PHP

Pros:

● easy to use
● immediate output

Cons:

● debugging in code tends to end up in git
● not the best tool for the job

Silverstripe Debug
Parameters

Silverstripe Debug Parameters

How to get more informations from Silverstripe CMS

● ?isDev=1 Put the site into development mode, enabling debugging messages
to the browser on a live server. For security, you'll be asked to log in with an
administrator log-in. Will persist for the current browser session.

● ?isTest=1 See above.
● ?debug=1 Show a collection of debugging information about the director /

controller operation
● ?debug_request=1 Show all steps of the request from initial HTTPRequest

to Controller to Template Rendering

Silverstripe Debug Parameters #2

● ?showqueries=1 List all SQL queries executed
● ?showtemplate=1 Show the compiled version of all the templates used,

including line numbers. Good when you have a syntax error in a template.
Cannot be used on a Live site without isDev when logged in as Admin.

https://docs.silverstripe.org/en/5/developer_guides/debugging/

https://docs.silverstripe.org/en/5/developer_guides/debugging/url_variable_tools/

https://docs.silverstripe.org/en/5/developer_guides/debugging/
https://docs.silverstripe.org/en/5/developer_guides/debugging/url_variable_tools/

You can disable that (for security reasons)

Only:

 environment: 'live'

SilverStripe\Dev\DevelopmentAdmin:

 deny_non_cli: true

🍸 Silverstripe DebugBar 🍹

lekoala/silverstripe-debugbar

https://github.com/lekoala/silverstripe-debugbar makes many things much easier
to spot. It gives you a lot of information during development.

https://github.com/lekoala/silverstripe-debugbar

Install as dev dependency with composer:

composer require --dev lekoala/silverstripe-debugbar
Common gotcha with DDEV

Debugbar shows you:

Timeline execution time overview

Database Queries, Long running queries

System logs and messages Shows anything
processed by a logger -> no need to check log

Session

Cookies

Parameter

Requirements

Middleware

Template

SiteConfig

Config System

Cache

Mails

Headers

CMS & PHP Version, Time & Memory Usage

Local Development using DDEV

DDEV

● for local development
● based on docker
● has everything you need and a lot extensions for special requirements
● apache-fpm/nginx
● mariadb
● all major PHP-Versions
● project-type=silverstripe (thanks to firesphere)
● plugins for PHPStorm and VSCode
● See https://ddev.com/

https://ddev.com/

XDebug
step debugging made easy

Why should I?

● find errors / bugs more easier
● know the tools for craftsmanship 🛠
● no debugging information gets committed to git
● easy setup with ddev and PHPStorm / VScode
● actually it works out of the box 🦾
● ddev xdebug on/off

○ switch it off for a faster dev experience when not debugging
● you’ll become more sexy ❤

What happened until now

● Xdebug is a PHP extension written by Derick Rethans -
he works on it since 2002!

● It uses the DBGp debugging protocol
● It is a powerful tool for debugging and profiling PHP code.

Xdebug still worth a talk? Just click •

DDEV makes setup much easier! Tweak a few things in your boilerplate, to make
it always available. https://github.com/lerni/ootstra/tree/master/.vscode

VSCode Extensions → .vscode/extensions.json

● DDEV Manager - mainly automatic ‘ddev xdebug true/false’
● PHP Debug Adapter

.vscode/tasks.json & .vscode/launch.json

● "hostname": "0.0.0.0" for CLI debugging
● "pathMappings": {“/var/www/html": "${workspaceFolder}"}

https://github.com/lerni/ootstra/tree/master/.vscode

Silverstripe DDEV, Xdebug etc. setup in under 2 minutes

https://docs.google.com/file/d/1-AJqCUkXfnnKcMWjquC-9Cp7C-cJnmPr/preview

DBGp debugging protocol

Fake Client IDE/Editor and listen to Xdebug

ddev xdebug on

$ nc -l 0.0.0.0 9003 - and fetch an url with the browser or curl

You can 👂 closer, if you really want to…

Debugger Functions

Why is XDebug better than var_dump() and die()?

● Breakpoint
● Conditional breakpoint
● List of all available variables in current scope
● Watch
● Frames (stack of called functions)

Methods

Step Over => goto next line

Step Into => go inside a called function or method

Force Step Into

Step Out => leave the current method

Run to Cursor

More Methods

Resume Program => goto next breakpoint

Evaluate Expression

Quick Evaluate Expression => without dialog

Toggle Breakpoint

View Breakpoints

GUI Overview PHPStorm

https://docs.google.com/file/d/1ZG_Y2tLlBJtRqy7_X6TjmkI-TnCOHcRD/preview

More debugging knowledge

When you can call it, you can debug it

Example: Debugging unit tests

● good for more complicated tasks that are not easy to reach on the site
○ e.g. shop checkout functionality

● fixtures maybe a bit hard to setup
● when a test works you’re done
● best done via CLI

PHPStan - Static Analyzer

PHPStan

Pros:

● Totally annoying
● can check your code for bugs before

they reach production
● works better with well typed classes
● forces you to think about types

Cons:

● Did I say it’s totally annoying… at least in the beginning

PHPStan: installation

● Of course using composer as a dev requirement
● There’s a package to make PHPStan understand Silverstripe,

e.g. DataObject::get() and its magic properties.

composer require --dev syntro/silverstripe-phpstan ^5

SS Shell

SSShell (Silverstripe’s shell, not SSS hell!)

● SSShell is a REPL for SilverStripe
running on Psy Shell 🚀

● PsySH is a runtime developer console, interactive
debugger and REPL for PHP.

● REPL = Read-eval-print loop

You can

● view classes/objects and static properties
● run methods on objects
● run sake commands and flush

Why should I use SSShell

● good for tinkering around in Silverstripe
● The interactive debugger saves lives! Stop die()ing all the time.
● an alternative for executing simple one time tasks

More informations:

● https://github.com/pstaender/ssshell
● https://psysh.org/

https://github.com/pstaender/ssshell
https://psysh.org/

https://docs.google.com/file/d/18YOBlDEXGI2kvhXLzGr2Jc7Byyy2TDPm/preview

Conclusion

Bugs’ natural habitat is code

Your code

There are tools to get rid of bugs

Use them

See you again in 2032!
👋

