
UGLY
and the awesome parts

SILVERSTRIPE

GOOD
BAD

TH
E

TH
E

TH
E

Is it good or even awesome? It
shows a strength of Silverstripe -
getting custom functionality at a low
cost (in terms of lines of code).

But as always there are some
tradeoffs.

Stephan Bauer

That's me. I'm part of relaxt
(https://www.relaxt.at).

https://www.relaxt.at

ENTITIES
ORM

And this works reasonably well, even
for really huge data models.

$project->???
There is a certain price to pay, as
Silverstripe has a very dynamic
approach there is no static type
safety, and no auto-completion out of
the box.

$project-> getDescription():string

getLogo():Image

getName():string

getProperties():array

I sometimes miss the comfort of a
Symfony/Doctrine project. But
nevertheless this comes a certain
cost (in terms of code required for
Entities and so on).

An approach that we are using as a
compromise: Define some public
constants and use them to access
everything. Might be ugly, but it helps
with refactoring.

Use them in the static config…

… and in methods (in the same or
other classes as well).

Identity Map

What else are we missing?

Unit of Work

Foreign Key Constraints

Proper use of Transactions
Transactions are used but
sparingly throughout the core…

Versioning
Don't get me wrong, Versioning is awesome and it is integrated
into the core, but there are some problems:

* Cleanup of old versions

* Versioning of relations (there ist the experimental https://

github.com/silverstripe/silverstripe-versioned-snapshots) 

But those are inherently complex problems, in any framework…

https://github.com/silverstripe/silverstripe-versioned-snapshots
https://github.com/silverstripe/silverstripe-versioned-snapshots
https://github.com/silverstripe/silverstripe-versioned-snapshots

Is it a Page?
Something that bothered me a lot when starting with Silverstripe. Is
an Event a subclass of Page, a RealestateObject a subclass of
Page, …?

My lesson learned: Use Composition, create an EventPage that
references an Event, create/delete the EventPage on the fly when
creating an Event. That seems to be the best of both worlds.

BACKEND

Sulu CMS

This is a Symfony based CMS, they
have a really nice backend: https://
sulu.io

WordPress
Gutenberg Editor

Love it or hate it, from my point of
view, inline editing fails for more
complex scenarios.

Customizing

React Redux

GraphQL Schema

Babel

Webpack

Entwine

I am not really into React, so this is
very opinionated, but a lot of
developers agreed - it is hard work
to extend the frontend of the
Silverstripe backend (much more
difficult than extending the
serverside parts :-P)

My "favorite" bug in the interface…

TEMPLATE

twig

6.0

I really like to have multiple blocks
that can be overwritten in
subtemplates, makes it very
flexible :-)

Maybe I'm too optimistic, but it
should be possible with Silverstripe
6.0. Fingers crossed

Whitespace control allows you to fix
unnecessary spaces and line breaks:

https://twig.symfony.com/doc/2.x/
templates.html#whitespace-control

https://twig.symfony.com/doc/2.x/templates.html#whitespace-control
https://twig.symfony.com/doc/2.x/templates.html#whitespace-control

MISC

Forms
Forms are difficult to style and
customize, in any framework I have
tried yet. So I guess there isn't much
to improve here.

Asset-Management

I think it could work better, especially if you have lots of
assets and want to handle storage locations for your users.
There are also cases where out customers don't want to
expose the original files, just smaller versions - but publishing
always happens for original and variants together.

Performance
From our experience this can be a major issue on more complex
websites. There is a lot you can do, caching in the template, but
there is a certain overhead that is difficult to tackle - the template
rendering is not the fastest around, ORM and DataExtensions
can cause a certain overhead and so on…

Community
That's a good or even awesome part. I believe
what really helps is, that you need to have a
certain technological know-how in order to use
the CMS as there is no way to do something
useful without coding.

EXTEND

A

Okay, bear with me. I try to point out
why extending Silverstripe works the
way it works and why this is well
thought (aka awesome).

So this is a class A

B extends A

A

Inheritance

The typical way to add new and
modify existing behavior is by
subtyping the class.

Inheritance

C extends B

B extends A

A
This works reasonably well, even on
multiple levels.

C extends B

B extends A

A

Inheritance

And it even works if the base classes
(A, B) are not modifyable by us, but
are part of a framework.

C extends ImageBlock

M1/ImageBlock ext Block

Block

Inheritance

Let's make this example a little bit
more real world. Let's assume we
have some content Block (inside
some core package) and a derived
ImageBlock (inside some other
package M1) and some custom block
C in our app that wants to modify
some implementation details,

Inheritance

M2/HintBlock ext Block

Block

C extends ImageBlock

M1/ImageBlock ext Block

Block

Let's assume that we have another module M2
that proves a HintBlock. And our custom block C
wants to be a HintBlock and an ImageBlock…

C extends ImageBlock

M1/ImageBlock ext Block

Block

Too much Inheritance

M2/HintBlock ext Block

Block

No way, there is no multiple
inheritance in PHP, but…

Mixin

M2/HintBlockTrait M1/ImageBlockTrait

As close as we can get - there are traits that can simulate
multiple inheritance to a certain degree. (Keep in mind this
hasn't been around when Silverstripe's Extension model was
designed.)

C extends Block
M2/HintBlockTrait

M1/ImageBlockTrait
Block

Mixin

Also keep in mind that the traits are
part of C, they can not be used to
add behavior to the Block (as we
need to modify a class in order to
add a Trait)

Typically this approach is called a
"mixin" allowing to flexible mix
functionalities. Think "composition
over inheritance"

Too much Mixin

This Trait-approach is limited as we
cannot add the functionality to the
base class, that is provided by some
package; we need to add this mixin
to every subclass.

A

Composition

In order to add functionality to a base class, this class needs
to be designed in a way that allows us to use composition/
configuration to modify it's behavior without actually
changing the base class. Graphically speaking, there are
some holes in implementation that can be filled by custom
implementations.

Composition

single_post_title

A
In WordPress and many other
systems these are events that can be
subscribed and used to modify/
update behavior, e.g.: changing the
post's title.

Composition

PostTitleDriverInterface#generate

A

DefaultTitleDriver#generate

In Symfony we could use drivers that
implement a certain functionality and are
configured via dependency injection.

D extends A

Composition

CDataExtension

BDataExtension

A

This is utilized by Silverstripe as well,
the extension points are just a variant
of this composition pattern. This
allows us to add behavior to a class A
even if we don't control the base
class (or any subclass).

Where Silverstripe really shines is,
that these Extensions also allow to
add public methods to the base
class, combining advantages of
composition and inheritance.

State of Silverstripe Survey
Some random idea. You might know "State of HTML" or "State of CSS" -
I think it would be beneficial to get a feeling for how people use
Silverstripe and what are the parts where improvements should be made.

UGLY
and the awesome parts

SILVERSTRIPE

GOOD
BAD

TH
E

TH
E

TH
E

